Электро-технические измерения

Описание работ: 

ИП Некрасов П.С. проводит комплекс измерений для обеспечения безопасной работы электрооборудования и внутренних электросетей здания (помещения), а также для выявления возможностей оптимизации работы электроприборов и оборудования.

1. Измерение петли «фаза-нуль»:
 
В электроустановках до 1000 В с глухозаземленной нейтралью безопасность обслуживания электрооборудования при пробое на корпус обеспечивается отключением поврежденного участка с минимальным временем. При замыкании фазного провода на соединенный с нейтралью трансформатора F(или генератора) нулевой провод или на корпус оборудования образуется контур, состоящий из цепи фазного и нулевого проводников. Это контур принято называть петлей «фаза-нуль». Рассчитать сопротивление контура L-N (или контура L-PE) достаточно сложно, поскольку существует множество факторов, которые учесть в расчетах очень сложно (таких как наличие переходных сопротивлений коммутационных аппаратов, наличие других путей тока аварийного режима — трубопроводов, металлоконструкций, повторных заземлений т.д.), — а при измерении они учитываются автоматически.

Характеристики устройств защиты и полное сопротивление петли «фаза-нуль» (в случае, когда сопротивлением в месте замыкания можно пренебречь), должны обеспечивать при замыкании на открытые проводящие части автоматическое отключение питания в пределах нормированного времени. Это требование выполняется при условии:

Zs*IA≤U0 где Zs — полное сопротивление петли «фаза-нуль»
IA — ток, меньший тока замыкания, вызывающий срабатывание устройства защиты;
U0 — номинальное напряжение (действующее значение) между фазой и землей
Периодичность измерения и нормы регламентируются соответствующими разделами ПУЭ и ПТЭЭП.

2. Измерение параметров УЗО:

Если в защищаемой цепи нет повреждений, ток I1 равен току I2 по абсолютному значению и противоположен по направлению. Геометрическая сумма этик токов равна нулю: I1 — I2 =0. В случае возникновения пробоя изоляции при прикосновении к открытым частям или корпусу установки электроприемника возникает ток утечки I∆ по защитному проводу РЕ: I1 = I2 + IΔ. Таким образом, сумма токов, протекающих через УЗО, отлична от нуля: I1 — I2 = IΔ.

Напряжение на корпусе защищаемого устройства UВ в соответствии с законом Ома равно:
UВ = IΔ*RE , где RE — сопротивление между зажимом заземляемого устройства и землей. Номинальный дифференциальный ток утечки IΔN должен быть подобран таким образом, чтобы напряжение прикосновения, возникающее при протекании этого тока, не превышало безопасного значения.

Время срабатывание дифференциального выключателя tA измеряется при дифференциальном токе, равному IΔn . Время измеряется от начала протекания дифференциального тока до момента отключения УЗО. Максимальное время отключения составляет 200 мс, а для выключателей селективного типа 500 мс.

Ток отключения дифференциального выключателя измеряется при создании в испытуемой цепи линейно возрастающего дифференциального тока. Ток возрастает от величины 0,3*IΔn до превышения тока уставки IΔn . В момент срабатывания дифференциального выключателя измеритель отображает на дисплее величину дифференциального тока. В случае, если УЗО не срабатывает, появляется надпись RCD. Правильность выбора величины номинального тока проверятся проверкой на «гиперчувствительность УЗО», т.е протеканием тока 0,5I∆n в течении 200 мс (согласно IEC 61557-6). Срабатывание УЗО при токе 0,5IΔn — результат «гиперчувствительности» УЗО или наличие в цепи больших токов утечки.

3. Измерение сопротивления изоляции:

Сопротивление изоляции RISO характеризует сквозной ток утечки Iскв (RISO=Uприл/Iскв). Сквозной ток Iскв (ток утечки) протекает по диэлектрику под воздействием постоянного напряжения и обусловлен наличием в диэлектриках свободных носителей заряда различной природы. В момент включения постоянного электрического поля через диэлектрик электрического конденсатора протекает ток смещения — Iсм, обусловленный быстрыми видами поляризаций. В неполярных однородных диэлектриках затем устанавливается ток сквозной проводимости — Iскв. В полярных и неоднородных диэлектриках протекает также ток абсорбции — Iабс, вызываемый активными составляющими токов, связанных с установлением замедленных (релаксационных) поляризаций. 

По мере заряда емкости измеряемого объекта (постоянным током), напряжение на зажимах мегомметра увеличивается (линейно). Затем устанавливается рабочая точка — напряжение достигает заданного значения и ток стабилизируется (данный ток является сквозным током диэлектрика Iскв).

Накопленный в процессе измерения заряд является источником потенциальной угрозы, и по окончании измерений приборами Sonel, автоматически разряжается (через внутренний резистор). Измерения проводятся под постоянным напряжением, чтобы минимизировать влияние емкости на результат измерения. Способ выполнения измерений сопротивления изоляции, а также требуемые измерительные напряжения описаны в ГОСТ Р 50571.16-99 и IEC 60364-6-61.

С точки зрения эксплуатации, состояние изоляционного материала характеризуется двумя коэффициентами — коэффициент абсорбции (Dielectric Absorption Ratio — DAR) и коэффициент поляризации (Polarization Index — PI).

Коэффициент абсорбции кабс характеризует влажность изоляционного материала. Коэффициент абсорбции — это отношение сопротивлений, измеренных мегомметром через 60 секунд с момента приложения напряжения (R60) и через 15 секунд после начала приложения испытательного напряжения от мегомметра (R15): Кабс = R60/R15
Если изоляция сухая, то коэффициент абсорбции значительно превышает единицу, в то время как у влажной изоляции коэффициент абсорбции близок к единице:

Если Кабс < 1,25 Изоляция является несоответствующей;
Если Кабс = 1,25 .. 1,6 Изоляция является хорошей;
Если Кабс >; 1,6 Изоляция является превосходной;


Для оценки состояния изоляции и остаточного ресурса используют коэффициент поляризации (Кпол), который характеризует ток сильно замедленных поляризаций (связанных с изменением структуры диэлектрика). Коэффициент поляризации — это отношение сопротивлений, измеренных мегомметром через 600 сек с момента приложения напряжения (R600) и 60 секунд после начала приложения испытательного напряжения от мегомметра (R60): Кпол = R600/R60

Для коэффициента поляризации обычно используют следующие показатели:

Если Кпол < 1 Изоляция является опасной;
Если Кпол = 1.. 2 Изоляция является сомнительной;
Если Кпол = 2.. 4 Изоляция является хорошей;
Если Кпол > 4 Изоляция является превосходной.

4. Измерение сопротивления ЗУ и удельного сопротивления грунта:

Качество заземляющих устройств значительно влияет на безопасность использования электрических установок, особенно на эффективность защиты от поражения электрическим током и молниезащиты. Заземляющее устройство выполняет также другие функции, связанные с безопасностью, например, используется для отвода электрических зарядов объектов, подверженных угрозе взрыва (например, на АЗС).

Для проверки электрических установок на соответствие требованиям по защите от поражения электрическим током необходимо произвести измерение сопротивления заземляющего устройства. Это сопротивление позволяет определить значение напряжения прикосновения, которое может возникнуть при одновременном прикосновении к двум проводящим частям, находящимся под разными потенциалами, или к одной проводящей части, находящейся под напряжением, и к земле.

Необходимость измерения удельного сопротивления грунта и сопротивления заземляющего устройства возникает уже на этапе проектирования и монтажа. Система заземления должна также подвергаться периодическим поверкам во время эксплуатации, чтобы коррозия или изменения удельного сопротивления грунта не могли значительно повлиять на ее параметры. Сеть заземляющего устройства может не показывать своей неисправности до тех пор, пока не произойдет пробой и не наступит опасная ситуация.

5. Проверка наличия цепи между заземлителями и заземляемыми элементами (металлосвязь):

Измерения производятся с целью определения целостности и непрерывности защитных проводников от измеряемого объекта до заземлителя или магистрали заземления и проводников выравнивания потенциалов, определения сопротивления измеряемого участка защитной цепи и с целью измерения (или отсутствия) напряжения на заземленных корпусах проверяемого оборудования в рабочем режиме.

Качество электрических соединений проверяется осмотром, а сварочных соединений ударами молотка (кувалды) с последующими измерениями цепи. По нормам значение сопротивления не должно превышать 0,05 Ом, при условии, что измерительный ток, не менее 200мА. 

6. Проверка качества электрической энергии:

Качество электроэнергии является необходимым условием безопасного применения электрооборудования. Снижение качества электрической энергии может привести к заметным изменениям режимов работы электроприборов и оборудования. В результате, к уменьшению производительности рабочих механизмов, ухудшению качества продукции, сокращению срока службы электрооборудования, повышению вероятности аварий.

  Единые требования к качеству электроэнергии закреплены Межгосударственным стандартом «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» ГОСТ  13109-97.

Стандартом устанавливаются следующие показатели качества электроэнергии:

  • установившееся отклонение напряжения,
  • размах изменения напряжения,
  • доза фликера,
  • коэффициент несимметрии напряжений по обратной последовательности,
  • коэффициент несимметрии напряжений по нулевой последовательности,
  • коэффициент искажения синусоидальности кривой напряжения,
  • коэффициент n-ой гармонической составляющей напряжения,
  • отклонение частоты,
  • длительность провала напряжения,
  • импульсное напряжение,
  • коэффициент временного перенапряжения.


Результат работ: 

Отчет о проведенных электро-технических измерениях. Рекомендации по оптимизации работы оборудования.